A DOVER COMPANY
VTD3 series

Voltage Controlled Temperature Compensated Crystal Oscillator

The VTD3, VCTCXO

Features

- CMOS Output
- Output Frequencies to 60 MHz
- Fundamental Crystal Design
- Optional VCXO function available
- Product is compliant to RoHS directive

Applications

- Wireless Communications
- Base Stations
- Point to point radios
- Broadband Access
- Test Equipment

Description

Vectron's VTD3 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, CMOS squarewave, temperature compensated oscillator, operating off either 3.3 or 5.0 volt supply.

Performance Characteristics

Table 1. Electrical Performance

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Min \& Typical \& Maximum \& Units \\
\hline Frequency \& \(\mathrm{f}_{0}\) \& 10.000 \& \& 60.000 \& MHz \\
\hline Supply Voltage \& \& \multicolumn{3}{|c|}{\(3.3 \mathrm{~V} \pm 5 \%, 5 \mathrm{~V} \pm 5 \%\)} \& \\
\hline Maximum Supply Voltage \& \& \& \& 7 \& \(V_{D C}\) \\
\hline \begin{tabular}{l}
Supply Current, \\
Output Frequency<22MHz \\
Output Frequency=>22MHz
\end{tabular} \& \(\mathrm{l}_{\mathrm{DD}}\) \& \& \& \[
\begin{aligned}
\& 15 \\
\& 24 \\
\& \hline
\end{aligned}
\] \& mA \\
\hline Output Level \({ }^{2}\) Logic High Logic Low Drive High Drive Low \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{OH}} \\
\& \mathrm{~V}_{\mathrm{OL}} \\
\& \mathrm{l}_{\mathrm{OH}} \\
\& \mathrm{IOL}^{2}
\end{aligned}
\] \& \(0.9 * \mathrm{~V}_{\mathrm{DD}}\)

4 \& \& $$
\begin{gathered}
0.1 * V_{D D} \\
-4
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mathrm{~mA} \\
\mathrm{~mA} \\
\hline
\end{gathered}
$$
\]

\hline Output Load \& \& \& 15pf \& \&

\hline Duty Cycle, @ 50\% \& \& \& \& 40/60 \& \%

\hline Control Voltage Impedance \& $\mathrm{Zv}_{\mathrm{vc}}$ \& 100 \& \& \& Kohm

\hline Control Voltage to reach pull, 5 V option 3.3 V option \& \& $$
\begin{aligned}
& 0.5 \\
& 0.3 \\
& \hline
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& 4.5 \\
& 3.0 \\
& \hline
\end{aligned}
$$
\] \& V

\hline Pull Range Ordering option, see last page \& TPR \& \multicolumn{3}{|c|}{$\pm 5, \pm 8, \pm 10, \pm 15$} \& ppm

\hline Temperature Stability Ordering option, see last page. \& \& \multicolumn{3}{|c|}{± 1.0 to ± 5.0} \& ppm

\hline Initial Accuracy, "No Adjust" option \& \& \& \& ± 2.0 \& ppm

\hline Power Supply Stability \& \& \& \& ± 1.0 \& ppm

\hline Load Stability \& \& \& \& ± 0.3 \& ppm

\hline Aging \& \& \& \& ± 1.0 \& ppm/year

\hline Operating temperature Ordering option, see last page \& \& \multicolumn{3}{|l|}{0/55, -10/60, -20/70, -30/75, -40/85} \& ${ }^{\circ} \mathrm{C}$

\hline Phase Noise, 12.800 MHz 10 Hz offset 100 Hz offset 1 kHz offset 10 kHz offset 100 kHz offset \& \& \& $$
\begin{aligned}
& -93 \\
& -123 \\
& -147 \\
& -155 \\
& -158 \\
& \hline
\end{aligned}
$$ \& \& $\mathrm{dBc} / \mathrm{Hz}$

\hline Start-up time \& \& \& \& 10 \& ms

\hline
\end{tabular}

[^0]
VCXO Functional Description

VCXO Feature: The VTD3 can be ordered with a VCXO function for applications where it will be used in a PLL, or the output frequency needs fine tune adjustments. This is high impedance input, 100 kohm, and can be driven with an op-amp or terminated with adjustable resistors etc. Pin 1 should not be left floating on the VCXO optional devices.
"No Adjust" Feature: In applications where the VTD3 will not be used in a PLL, or the output frequency does not need fine tune adjustments, the fixed TCXO/VTD3-x0xx is the best option. By using the "no adjust" option, the circuit is simplified as Vc does not need to adjusted or set to a predetermined voltage. Pin 1 can be grounded to reduce the risk of adding noise into the circuit.

Outline Diagrams, Pad Layout and Pin Out

Table 2. Pinout

Pin \#	Symbol	Function
1	N / C or V_{c}	No Connect (VTD3-x0xx) or VCXO Control Voltage
2	GND	Electrical and Case Ground
3	f_{0}	Output Frequency
4	$V_{D D}$	Supply Voltage

Tape and Reel
Table 3. Tape and Reel Dimensions (mm)

Tape Dimensions														
Product	A	B	C	D	E									
VTD3	24	11.5	1.5	4	E	F	(G	H	I	J	K	L	Reel

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Table 4. Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Storage Temperature	Tstorage	$-40 / 85$	${ }^{\circ} \mathrm{C}$

Reliability

The VTD3 qualification tests have included:
Table 5. Environnemental Compliance

Parameter	Conditions
Mechanical Shock	MIL-STD-883 Method 2002
Mechanical Vibration	MIL-STD-883 Method 2007
Temperature Cycle	MIL-STD-883 Method 1010
Solderability	MIL-STD-883 Method 2003
Gross and Fine Leak	MIL-STD-883 Method 1014
Resistance to Solvents	MIL-STD-883 Method 2015

Handling Precautions

Although ESD protection circuitry has been designed into the VTD3, proper precautions should be taken when handling and mounting. VI employs a Human Body Model and a Charged-Device Model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance $=1.5 \mathrm{Kohms}$ and capacitance $=100 \mathrm{pF}$ is widely used and therefore can be used for comparison purposes.

Table 6. ESD Ratings

Model	Minimum	Conditions
Human Body Model	1000	MIL-STD-883 Method 3015
Charged Device Model	500	JESD 22-C101

Suggested IR profile

Table 7 shows max temperatures and lower peak temperatures can also be used e.g. peak temperature of $230-240^{\circ} \mathrm{C}$. The VTD3 should not be subjected to a wash process that will immerse it in solvents - a no clean process is recommended.

Table 7. Reflow Profile Parameter	Symbol	Value
PreHeat Time	t_{s}	60 sec Min, 180 sec Max
Ramp Up	$\mathrm{R}_{\text {up }}$	$3^{\circ} \mathrm{C} / \mathrm{sec}$ Max
Time Above $217{ }^{\circ} \mathrm{C}$	t_{L}	60 sec Min, 150 sec Max
Time To Peak Temperature	$\mathrm{t}_{\text {AMB } \cdot}$	480 sec Max
Time At $260{ }^{\circ} \mathrm{C}$ (max)	t_{p}	6 sec Max
Time At $240^{\circ} \mathrm{C}$ (max)	$\mathrm{t}_{\mathrm{p} 2}$	60 sec Max
Ramp Down	$\mathrm{R}_{\text {D }}$	$6^{\circ} \mathrm{C} / \mathrm{sec}$ Max

Ordering Information

Table 8. Standard Frequency List

10.00	11.00	12.288	12.352	12.50	12.80	13.00	14.31818
14.40	15.36	16.384	16.80	19.20	19.44	19.6608	19.68
20.00	26.88	27.00	32.00	32.768	44.00	44.736	50.000

$\mathrm{H}:+5.0 \mathrm{Vdc} \pm 5 \%$
J: +3.3 Vdc $\pm 5 \%$

Pulling Range

0: Fixed TCXO, no adjust
1: $\pm 5 \mathrm{ppm}$
2: $\pm 8 p p m$ \qquad Stability Options
3: $\pm 10 \mathrm{ppm}$
4: $\pm 15 \mathrm{ppm}$

Output Frequency
In MHz

Temperature Options
A: 0 to $55^{\circ} \mathrm{C}$
B: -10 to $60^{\circ} \mathrm{C}$
C: -20 to $70^{\circ} \mathrm{C}$
D: -30 to $75^{\circ} \mathrm{C}$
E: -40 to $85^{\circ} \mathrm{C}$

1: $\pm 1.0 \mathrm{ppm}$
B: $\pm 1.5 \mathrm{ppm}$
2: $\pm 2.0 \mathrm{ppm}$
C: $\pm 2.5 \mathrm{ppm}$
3: $\pm 3.0 \mathrm{ppm}$
4: $\pm 4.0 \mathrm{ppm}$
5: $\pm 5.0 \mathrm{ppm}$
Note: Not all combinations are available

Revision	Date	PLM Approval	Eng req'd	Engineering Approval	Date	Description
1.6	$08 / 13 / 07$	FB				Increase output frequency from 50 MHz to 60MHz, update package marking and reel dimensions

[^0]: 1. A 0.01 uF and a 0.1 uF capacitor should be located as close to the supply as possible (to ground) is recommended.
 2. Output is DC coupled.
